Every Finite Topology is Generated by a Partial Pseudometric

نویسندگان

  • Asl Güldürdek
  • Tom Richmond
چکیده

Given any preorder on a finite set X, we present an algorithm to construct a partial pseudometric p on X which generates in the sense that a b if and only if p(a, b) ≤ p(a, a). The specialization topology generated by agrees with the topology generated by the partial pseudometric p-balls, and consequently any topology on X is generated by a partial pseudometric. AMS Subject classification: 54A05, 06A99

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Codimension and pseudometric in co-Heyting algebras

In this paper we introduce a notion of dimension and codimension for every element of a distributive bounded lattice L. These notions prove to have a good behavior when L is a co-Heyting algebra. In this case the codimension gives rise to a pseudometric on L which satisfies the ultrametric triangle inequality. We prove that the Hausdorff completion of L with respect to this pseudometric is prec...

متن کامل

An Alexandroff topology on graphs

Let G = (V,E) be a locally finite graph, i.e. a graph in which every vertex has finitely many adjacent vertices. In this paper, we associate a topology to G, called graphic topology of G and we show that it is an Alexandroff topology, i.e. a topology in which intersec- tion of every family of open sets is open. Then we investigate some properties of this topology. Our motivation is to give an e...

متن کامل

On completeness of quasi-pseudometric spaces

The notion of completeness in metric spaces and that of completing a metric space are traditionally discussed in terms of Cauchy sequences. The main reason being that this concept deals precisely with the issue of convergence of sequences in the sense that every convergent sequence is a Cauchy sequence. The paper deals with completion in a setting that avoids explicit reference to Cauchy sequen...

متن کامل

Pseudoconvex Regions of Finite D’angelo Type in Four Dimensional Almost Complex Manifolds

Let D be a J-pseudoconvex region in a smooth almost complex manifold (M, J) of real dimension four. We construct a local peak J-plurisubharmonic function at every point p ∈ bD of finite D’Angelo type. As applications we give local estimates of the Kobayashi pseudometric, implying the local Kobayashi hyperbolicity of D at p. In case the point p is of D’Angelo type less than or equal to four, or ...

متن کامل

Finite Metric Spaces and Their Embedding into Lebesgue Spaces

The properties of the metric topology on infinite and finite sets are analyzed. We answer whether finite metric spaces hold interest in algebraic topology, and how this result is generalized to pseudometric spaces through the Kolmogorov quotient. Embedding into Lebesgue spaces is analyzed, with special attention for Hilbert spaces, `p, and EN .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Order

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2005